
Smart Assistants for Enhancing System Security
and Resilience

Andrey Sadovykh
Softeam

Paris, France
andrey.sadovykh@softeam.fr

Dragos Truscan, Tanwir Ahmad
Åbo Akademi University

Turku, Turku
firstname.lastname@abo.fi

Martin A. Schneider
Fraunhofer FOKUS
Berlin, Germany

martin.schneider@fokus.fraunhofer.de

Wissam Mallouli, Ana Cavalli
Montimage

Paris, France
firstname.lastname@montimage.org

Cristina Seceleanu
Mälardalen University

Västerås, Sweden
cristina.seceleanu@mdu.se

Abstract—Security and resilience have become paramount
concerns for integrated system manufacturers as the number
of vulnerabilities continues to increase annually. Cyber threats
pose significant risks with substantial potential impacts on both
manufacturers and end users. New regulations, such as the
EU Cybersecurity Act and EU Cyber Resilience Act, mandate
stricter practices and thorough verification throughout devel-
opment and operations. Implementing a holistic DevSecOps
process encompassing threat analysis, requirements engineering,
development practices, verification, and operations management
is challenging for large enterprises and SMEs. This complexity
arises from the need for specialized expertise, knowledge of
various techniques and tools, rigorous principle application, and
thorough verification at each step, making the process costly,
time-consuming, and potentially stifling to innovation and time-
to-market.

Our proposal introduces a suite of smart assistants designed
to work collaboratively with engineers. These assistants recom-
mend best practices and tools, suggest context-specific regulatory
requirements, analyze design architecture, generate tailored code
and configurations, and conduct resilience tests. This comprehen-
sive approach aims to ensure the correctness and completeness
necessary for security and regulatory compliance.

Index Terms—DevSecOps, Smart assistants, Security, Re-
silience, Requirements Engineering, Security by Design, Testing,
Monitoring, Anomaly Detection

I. INTRODUCTION

In the digital age, where software underpins virtually every
aspect of modern life, security has emerged as a paramount
concern [1], [2]. However, the relentless pursuit of fast deploy-
ment often takes precedence over robust security practices,
leading to the proliferation of vulnerabilities and insecure
applications [3]. This paper investigates the urgent need for
a paradigm shift towards integrated hardware and software
security engineering to address this pressing issue.

At the heart of this effort lies the recognition that software
forms the backbone of IT infrastructures, services, and prod-
ucts. Yet, despite its pervasive influence, the current software

Thanks to AIDOaRt, grant agreement No 101007350 under JU ECSEL and
Horizon 2020 funding programs

development landscape prioritizes speed over security, leaving
systems vulnerable to exploitation. Compounding this chal-
lenge is the fact that a significant portion of the software
and hardware utilized within the European Union (EU) is
developed outside its borders, necessitating stringent security
requirements and their verification to align with EU standards.

Central to our investigation is the imperative for the EU to
ensure the verifiability and auditability of software and hard-
ware concerning their security. This includes a comprehensive
analysis of the potential security implications associated with
using open-source software and hardware, as well as strategies
for enhancing security auditability within this context. The
latest supply chain attacks on open source software projects
such as xz utils backdoor [4] underpin this imperative.

Moreover, in a digital ecosystem characterized by perpet-
ual updates and evolving regulatory frameworks, traditional
approaches to security assessment fall short. Hence, there
arises a critical need for methodologies and tools that facilitate
continuous security assessments to adapt to the dynamic nature
of modern software and hardware landscapes.

Several initiatives have proposed a holistic cybersecurity
view under the DevOps paradigm. Among them, the VeriDe-
vOps project [5] proposed integrating DevOps principles with
early verification, test automation, and monitoring to ensure
software security and reliability. It provides a systematic
approach to embedding security requirements throughout the
software development lifecycle. Key technologies include Nat-
ural Language Processing (NLP) for analyzing and formal-
izing security specifications and automated tools for quality
assurance, system testing, and runtime monitoring. VeriDe-
vOps automates the configuration of trace monitors based on
security requirements and employs continuous monitoring to
detect anomalies and vulnerabilities. It also generates attack
tests to identify invalid states and potential security weak-
nesses. Additionally, it performs automated design and code
checks using semi-structured and structured formalisms, either
through model simulation or formal verification, to ensure
compliance with security standards.



Applying VeriDevOps may pose several challenges. While
it proposes more than 20 tools, it also requires expertise
across multiple domains, including Threat Analysis, Security
Requirements Engineering, various testing techniques, Moni-
toring, and Incident Analysis. Despite automating many steps,
significant manual input is still necessary, making applying
the methodology tedious. Additionally, integrating specific
security methods for hardware development, operations, and
verification into the workflow is complex. While VeriDevOps
covers many scenarios, it does not encompass all possible
security situations, necessitating further expansion to address
diverse use cases comprehensively. Thus, applying VeriDe-
vOps effectively demands both broad expertise and ongoing
adaptation to cover more specific scenarios.

The proposal of this paper is to elevate the intelligence and
automation of cybersecurity in software development by incor-
porating AI-based assistance that provides instructive support.
This advanced assistance would provide recommendations
for configuring and formalizing diverse security properties,
selecting suitable testing techniques, and interpreting and elu-
cidating the results. Additionally, it would offer boilerplates,
examples, and detailed explanations for various methods and
tools, thereby streamlining the implementation process.

One of the significant challenges in this approach is ensuring
the AI-based system effectively suggests design approaches
and coding practices that enhance system resilience, maintain-
ing operation even amidst threats and attacks, including the
hardware integration aspects. This necessitates the AI’s ability
to understand and apply resilience requirements accurately,
guiding developers to meet these requirements and verify
compliance effectively.

Furthermore, AI assistance must facilitate informed
decision-making by recommending appropriate methods for
satisfying specific resilience requirements. This includes pro-
viding insights into the application of these methods to ensure
thorough verification of compliance. The challenge lies in
the AI’s capacity to interpret complex security specifications
and translate them into actionable guidance that aligns with
industry standards and best practices.

Overall, integrating AI-based assistance within VeriDevOps
and enriching it with hardware aspects aims to overcome
the challenges. By providing intelligent, context-aware rec-
ommendations and instructive support along with facilitating
comprehensive verification processes, this approach seeks to
enhance the reliability and security of software systems in a
systematic and scalable manner.

The paper is structured as follows: Section II presents the
background, including the achievement of the project and a
review of related works, setting the context for SecDevOps
and automation with smart assistants. Section III introduces
the concept of employing smart assistants throughout different
phases of the SecDevOps cycle, emphasizing its potential to
enhance security practices, and outlines main scenarios and
flows to illustrate the application of smart assistants in real-
world development contexts. Finally, Section IV concludes the
paper by summarizing key contributions and outlining future

research and development avenues.

II. BACKGROUND AND RELATED WORK

A. Cybersecurity Engineering Process

Cybersecurity implementation within a system must com-
mence at the foundational level of requirements specification.
These requirements guide system design, component selection,
implementation, integration, and subsequent verification and
validation processes. The efficacy of requirements specifica-
tion hinges upon various parameters, notably clarity, atom-
icity, and verifiability. Formal and semi-formal specification
techniques play a pivotal role in automating the verification
process, thereby aiding in identifying and mitigating potential
cybersecurity threats throughout the system’s lifecycle. Ini-
tiating with a comprehensive understanding of the system’s
scope and the assets requiring protection against cyberse-
curity threats, the requirements specification informs critical
design decisions. These decisions encompass the selection of
appropriate hardware and software platforms, as well as the
configuration of the application stack. Moreover, the design
phase necessitates strategic considerations regarding access
control mechanisms and internal restrictions, which, in turn,
dictate the architectural blueprint of the implemented system.
After design, adherence to specific coding practices becomes
imperative to minimize the injection of vulnerabilities and
fortify mechanisms for secure storage and access of sensitive
information.

Beyond the developmental phase, systems are inevitably
exposed to many attacks aiming at exploiting vulnerabilities
within the application, software, and hardware infrastructure.
Given the omnipresent nature of vulnerabilities, incessantly
discovered at a mass scale, preemptive measures must be
in place to detect and manage these vulnerabilities through
timely patches and other protective measures. Anticipating
vulnerabilities before disclosure underscores the importance
of anomaly detection mechanisms capable of preemptively
identifying potential attack vectors.

Moreover, hardware resilience assessment is essential in
ensuring the overall security and reliability of computing
systems, as it complements software resilience assessment by
addressing vulnerabilities inherent in the physical components.
Techniques for hardware resilience assessment include rigor-
ous testing for fault tolerance, stress testing, and examining
supply chain integrity. These assessments face significant chal-
lenges, such as detecting and mitigating hardware backdoors,
counterfeit components, and vulnerabilities introduced during
manufacturing. Given that hardware can originate from un-
trusted sources or countries, it is critical to validate its security
through thorough inspection and verification processes. This
layered approach helps prevent the software from inheriting
hardware-related vulnerabilities, thereby fortifying the entire
system’s resilience.

Resilience in software and hardware systems is fundamen-
tally the ability of a system to resist, absorb, recover from, and
adapt to adverse conditions, particularly in the face of physical



Fig. 1. The concept of Smart Assistants for Continuous Holistic Security Verification

and sophisticated cyber-attacks [6]. These systems, character-
ized by the integration of physical components and software
elements, are inherently susceptible to a range of threats aimed
at disrupting system availability, perturbing performance, and
other malign objectives. The repercussions of such attacks
extend beyond system disruption and can trigger multilevel
consequences, including economic, social, and environmental
impacts. Moreover, the interconnected nature of their com-
ponents means that an attack on one part of the system
can negatively affect other parts. This interconnectedness is
even more pronounced in our world of interlinked critical
infrastructures, where an attack on one system can trigger
cascading failures across others. Therefore, it is imperative that
these systems are engineered with resilience in mind, adopting
proactive designs and reactive countermeasures to effectively
mitigate these threats [7]. These resilience techniques are
multifaceted and can be classified into several categories as
proposed by NIST1.

B. The VeriDevOps Framework

VeriDevOps project proposed a methodology [8] that
merges DevOps principles with early verification, test au-
tomation, and monitoring, ensuring the security and reliability
of software systems. It provides a structured approach to

1The NIST Directive 800-160: https://csrc.nist.gov/pubs/sp/800/160/v2/r1/final

software development, emphasizing the continuous integration
of security requirements throughout the development lifecycle.

At its core, VeriDevOps automates key aspects of software
development with security in mind. This includes defining and
analyzing security requirements, conducting system testing
and monitoring, and integrating these processes into estab-
lished VeriDevOps practices.

The process begins with analyzing and formalizing text-
based security requirements gathered from various sources.
Natural Language Processing (NLP) and pattern recognition
technologies play a crucial role in maintaining consistency
and clarity in these specifications. Additionally, patterns are
translated into temporal logic for better understanding.

Another essential aspect is the automated configuration
of trace monitors, which are based on formalized security
requirements using structured formalisms. These monitors
are continuously adjusted and monitored over time to detect
anomalies and vulnerabilities during runtime.

Furthermore, VeriDevOps automatically generates attack
tests based on security requirements, aiming to expose poten-
tial vulnerabilities by pushing the system into invalid states.
These tests complement positive testing methods and reveal
insecure behaviors that may go unnoticed otherwise. To further
improve testing, guidelines can be established for testers
to propose scenarios that evaluate both security and energy



properties, often overlooked areas.
Finally, VeriDevOps automates design and code checks

according to specified security requirements using semi-
structured and structured formalisms. These verification ac-
tivities can be carried out through simulation or formal veri-
fication of system descriptions.

The VeriDevOps Methodology (Fig. 2) encompasses a suite
of interconnected tool sets designed for Security Requirements
Generation, Reactive Protection at Runtime, and Prevention at
Design and Development. These tool sets are closely integrated
to align security requirements with design analysis, code-level
verification, and runtime system analysis. They comprise con-
crete tool components provided and developed by VeriDevOps
partners, varying in licensing policies and maturity levels.
While some tools are well-established commercial or open-
source solutions, others are more experimental. However, all
tools must adhere to the interfaces and features outlined in
the VeriDevOps Methodology and be interchangeable to a
certain extent. Case studies combine these tools in a specific
industry context based on their alignment with requirements
and compatibility with industry practices.

1) Requirements Specification: In the VeriDevOps process,
security requirements undergo examination and formaliza-
tion, sourced from diverse textual descriptions. To ensure
consistency and clarity while avoiding inconsistencies and
ambiguities, we leverage Natural Language Processing (NLP)
alongside established patterns or boilerplates. Additionally,
techniques are employed to automatically translate these pat-
terns into temporal logic, further enhancing requirement clarity
and consistency. Various techniques, such as PROPAS and RQ-
CODE, can be integrated into the VeriDevOps methodology
for requirements formalization. Manual and semi-automatic
translation methods are also employed to optimize this process.
Furthermore, verification and analysis tasks can be executed
by either simulating the final model or verifying the system’s
description. Using natural languages and model smells, we’ve
established indicators (e.g., NALABS) for security require-
ment flaws and defined metrics to automatically detect these
flaws in security artifacts.

2) Prevention at Development: During this phase, multiple
techniques are employed for test modeling (e.g., UPPAAL,
PyLC, Modelio, GW2UPPAAL), automated test generation
(e.g., MetaTester, CompleteTest, Graphwalker), and vulner-
ability localization (e.g., Localizer, RCA). This information
aids in generating both positive and negative tests intended
to push the system into specific states, thereby exposing
potential vulnerabilities. To enhance this process, establishing
guidelines and a format enabling testers to design scenarios
evaluating not only security aspects but also energy properties
would be beneficial, as energy properties are often overlooked
in testing.

3) Protection at Operations: An automated setup of moni-
toring tools (e.g., MMT, THOE, EARLY), based on the spec-
ification of security requirements in natural language, semi-
structured, or structured formalisms is available. Over time,
these traces are automatically configured and continuously

observed using formal or semi-formal specifications. Runtime
monitoring, which observes system behavior during operation,
is implemented to detect errors, monitor performance, ensure
compliance, and maintain system health. This serves as a
foundation for potential preemptive countermeasures.

VeriDevOps represents a departure from traditional soft-
ware development methodologies by placing security at the
forefront of the development process. By integrating secu-
rity requirements analysis, automated testing, vulnerability
localization, and continuous monitoring into the DevOps
pipeline, VeriDevOps ensures a holistic approach to software
security. This innovative integration enables organizations to
proactively identify and mitigate security threats throughout
the software development lifecycle, thereby enhancing the
resilience of software systems.

C. Challenges

Addressing security challenges within the DevOps frame-
work involves navigating several complex issues. Firstly,
integrating security requirements into the DevOps pipeline
presents a significant challenge. This requires ensuring that
security considerations are seamlessly woven into the exist-
ing development and deployment processes without impeding
agility or efficiency.

Secondly, achieving clarity and detailing security require-
ments is crucial yet challenging. It necessitates expressing
security needs in a clear, unambiguous manner that leaves
no room for interpretation. However, achieving this clarity
becomes more complex when utilizing diverse formal methods
and tools across different stages of the development lifecycle.

Moreover, integrating security requirements analysis and
verification throughout the entire DevOps process is essential
but challenging. It involves overcoming barriers to incorporat-
ing security considerations at every stage, ensuring consistency
and accuracy in specifying and analyzing requirements across
diverse environments and toolsets.

Additionally, automating security test generation and selec-
tion poses its own set of challenges. Identifying appropriate
tools and techniques for generating automated security tests
and ensuring their seamless integration within the DevOps
pipeline can be a daunting task, requiring careful consideration
of compatibility and effectiveness.

Furthermore, implementing robust security monitoring sys-
tems presents another significant challenge. This entails es-
tablishing comprehensive monitoring across all critical com-
ponents of the DevOps pipeline, detecting and responding
to security threats in real-time while maintaining system
performance and reliability.

Another significant set of challenges involves supporting
developers and guiding them through the implementation of
the DevSecOps methodology. This includes facilitating their
ability to select appropriate methods and tools, configure them
effectively, and utilize them proficiently within the DevSecOps
framework. These challenges encompass various aspects such
as formal specifications, static analysis, testing methodologies,
monitoring systems, root cause analysis techniques, and the



Fig. 2. The VeriDevOps Framework

management of vulnerabilities and rework. Addressing these
challenges is essential for empowering developers to seam-
lessly integrate security practices into the software develop-
ment lifecycle while ensuring the reliability and security of
the resulting software products.

Finally, integrating methodologies, tools, and assistant tech-
nologies within Continuous Integration, Deployment, DevOps
and CyberOps practices is indispensable. By embedding se-
curity checks within automated pipelines and establishing
real-time monitoring mechanisms, organizations can ensure
adherence to quality standards and resilience practices across
the system lifecycle’s developmental and operational phases.
This holistic approach enhances system security and fosters
a culture of proactive cybersecurity within the organizational
framework.

D. Smart Assistants Background

The use of smart assistants (sometimes termed as bots)
in developing computing systems has become increasingly
prominent, primarily due to advancements in generative ar-
tificial intelligence (AI) and machine learning (ML). Smart
assistants in the context of software engineering are tools
and platforms that leverage AI and ML to aid developers
in various aspects of software development, maintenance,
and management. These AI-driven tools enhance productivity,
improve code quality, and streamline development processes.

The integration of smart assistants into software engineering
is transforming the way developers write code, test software,
manage projects, and interact with development environments.
As AI technologies continue to evolve, these tools are expected

to become even more sophisticated, further enhancing their
capabilities to support the software development lifecycle.

The penetration of smart assistants has been observed in
all major areas of the software and system development
process to assist with different tasks. As summarized by
several systematic literature reviews on the topic [9]–[11]
the assistants can span tasks from development automation
(requirements processing, code generation [12], debugging,
testing [13], documentation generation), real-time collabora-
tion and support (coding assistance via code completion [14],
error detection and correction [15], [16], code reviews [17]–
[19]) to project management (tracking progress, predicting
timelines, and identifying bottlenecks) just to enummerate the
main ones.

Of particular importance, the evolution of large language
models (LLMs) has enabled many of the previously enumer-
ated activities. However, recent studies [20] have shown that
the benefits of LLMs are limited by a set of open problems
such as hallucinations and the importance of complementing
the former with complementary techniques. Nevertheless, the
authors of [21] provide a survey of how LLM-based agents can
support the planning activities of complex processes, which
can also be applied to IT systems.

Following similar techniques and practices as described
above, smart assistants can also be used to assist with
cybersecurity-related activities throughout the software and
system development process. Threat detection and analysis,
automated response, vulnerability management, compliance
and reporting, security training and awareness, and incident
forensics and analysis are just a few of the areas that can



benefit from the capabilities of smart assistants. However,
as emphasised in [22], there is still a need for automated
intelligent tools to assist cybersecurity-related tasks.

III. SMART ASSISTANTS FOR CONTINUOUS HOLISTIC
SECURITY VERIFICATION

Utilizing AI-driven smart assistants within the VeriDevOps
framework represents a cutting-edge innovation in software
development. These assistants facilitate various aspects of the
security lifecycle, from requirements specification to vulner-
ability analysis and remediation. By harnessing the power
of AI, VeriDevOps empowers development teams to make
informed security decisions and streamline security-related
tasks, ultimately improving the efficiency and effectiveness of
the development process.

Integrating smart assistants within the VeriDevOps frame-
work offers a multifaceted approach to addressing cyberse-
curity challenges across the software development lifecycle.
Here, we outline key concepts and provide illustrative scenar-
ios to motivate the application of smart assistants in real-world
development.

To address the needs outlined above, we propose the com-
prehensive integration of specialized smart assistants across
all development lifecycle phases, including threat and risk
analysis, verification, and monitoring, as depicted in Figure 1.
These smart assistants will collaborate and assume responsi-
bilities such as selecting and configuring task-specific tools,
generating relevant artefacts, and evaluating the outcomes of
these processes. For instance, a smart assistant designated
for verification tasks might select and configure appropriate
tools for verification, such as static analysis and fuzzing tools,
execute the analysis and testing procedures, and assess the
results, as depicted in Figure 3.

To ensure a comprehensive approach towards the devel-
opment lifecycle, the scope of the smart assistants extends
beyond individual development phases and activities. These as-
sistants will also facilitate exchanges and collaboration among
various smart assistants responsible for different tasks. This
is achieved through the sharing of results, thereby creating
a continuous feedback loop among the smart assistants. As
demonstrated in Figure 3, this systematic exchange of infor-
mation fosters a holistic understanding of the cybersecurity
posture of a product. Other smart assistants can leverage this
aggregated information to enhance their outputs, for instance,
by incorporating identified threats and risks into the verifica-
tion phase.

Additionally, this collaborative framework benefits the op-
erational dynamics among smart assistants and provides man-
ufacturers with a comprehensive overview of the system. This
is achieved through the storage and further processing of
artefacts within a knowledge base, which is then utilized
to generate summaries and overviews of various activities,
thus offering a consolidated view of system security and
performance.

A. Smart Assistants for Structured Resilience Requirements

Security presents a dynamic challenge shaped by an ever-
evolving threat landscape and shifting regulatory frameworks.
Recent sophisticated attempts to compromise the Linux kernel
via supply chain attacks using xz utils, coupled with the
enactment of the Cyber Security Act (CSA) and the Cyber
Resilience Act (CRA), highlight the imperative for refined
development methodologies. These methodologies should not
only enable engineers to create and deliver products with
elevated security standards and thorough verification and val-
idation but also assist them in comprehending and integrating
regulatory demands and requirements into the development
process to demonstrate compliance with pertinent regulations
and standards, such as IEC 62443 and ETSI EN 603645,
and potentially certification frameworks like the new EUCC.
Furthermore, emerging threats and risks associated with the
supply chain necessitate a deeper understanding to address
and document these concerns effectively.

Central to our proposal is AI-based smart assistants de-
signed to optimize cyber resilience through enhanced threat
modelling and analysis. These smart assistants utilize estab-
lished standards like IEC 62443, emerging regulations such
as the CSA and CRA, and NIST guidelines to identify,
analyze, and understand the implications of threats. Acting
as a pivotal interface between system engineers and the
development processes, these smart assistants ingest threat
data from diverse sources, including vulnerability databases
such as Common Vulnerabilities and Exposures (CVEs),
Common Weakness Enumerations (CWEs), Security Techni-
cal Implementation Guides (STIGs), Threat Intelligence and
Management Platforms, and newly identified vulnerabilities
(0-day vulnerabilities). By referencing industry standards and
regulations, the smart assistants evaluate the relevance of these
threats to the system under development, ensuring compliance
and pinpointing specific threats that need mitigation. This
facilitates a comprehensive threat modelling process, aligning
analyzed threat data with the system’s design specifications,
thereby enabling system engineers to proactively address
vulnerabilities and incorporate security measures from the
project’s inception.

Due to the increasing complexity of security threats, ef-
fective yet flexible specification methods that support rigorous
analysis of software security requirements are needed. Security
requirements specifications that consider thematic roles and
domain knowledge to enable deep semantic analysis are desir-
able. We aim to develop specific assistants similar to those for
code generation (e.g., GitHub Copilot2), which will empower
engineers to generate consistent and testable specifications by
interpreting natural language security requirements or partial
code inputs. The assistant will be based on our work on the
semantic analysis framework of ReSA, a structured, pattern-
based language and ontology for specifying embedded systems
requirements [23]–[25], as well as on our previous work on
EARS-based test generation for PLC programs [26].

2https://github.com/features/copilot



Fig. 3. Tasks examples supported by Smart Assistants

1) Example: Automated Threat Modelling and Analysis
Flow: Scenario: A multinational manufacturing company is
upgrading its industrial control systems (ICS) to enhance secu-
rity and comply with international standards and regulations.
The company aims to ensure that its systems are resilient
against cyber threats and comply with relevant regulatory
requirements.

Flow: To utilize smart assistants for conducting resilience
threats analysis and suggesting mandatory and recommended
requirements from EU regulatory frameworks (such as the EU
Cyber Resilience Act), IEC 62443, NIST guidelines, and the
EU Common Criteria.

1) Resilience Properties Modelling: The company’s cy-
bersecurity team initiates the resilience threats analysis
process for the new ICS upgrade project. They model
system properties with the smart assistant, including the
system’s architecture, intended operational environment,
and potential threat vectors.

2) Threat Identification: The smart assistant analyzes the
properties and identifies potential resilience threats spe-
cific to the ICS, such as supply chain attacks, insider
threats, and vulnerabilities in communication protocols.

3) Regulatory and Standards Compliance: The smart assis-
tant aligns identified threats with regulatory standards,
suggesting mandatory requirements from the EU Cyber
Resilience Act, guidelines from IEC 62443, best prac-
tices from NIST, and security assurance methods from
the EU Common Criteria, covering risk management,

incident reporting, access control, monitoring, and eval-
uation.

4) Resilience Requirements Suggestions: The smart as-
sistant provides a categorized list of mandatory and
recommended requirements, such as risk management
(EU Cyber Resilience Act), Security Level 3 compliance
(IEC 62443), incident response planning (NIST), and
EAL4+ certification (EU Common Criteria), along with
recommendations like continuous monitoring, security
audits, penetration testing, and secure SDLC practices.

5) Resilience Planning, Implementation and Verification:
The cybersecurity team reviews the smart assistant’s
suggestions and develops an action plan, assigning re-
sponsibilities, setting timelines, and allocating resources
for each compliance activity. The team implements the
mandatory and recommended requirements, using the
smart assistant for guidance. The assistant continuously
monitors compliance status and alerts the team to de-
viations or emerging threats. After implementation, the
smart assistant helps verify compliance through au-
tomated checks and generates detailed reports. These
reports are used for internal review and are submitted
to regulatory bodies for compliance verification.

B. Smart Assistants for Security Testing

Cybersecurity testing represents a critical phase in the
software development lifecycle, comprising various activities
including strategic planning, risk and requirements analysis,



test design, execution, evaluation, and comprehensive report-
ing. There exists a plethora of methodologies, strategies,
and tools designed to facilitate these processes. Notwith-
standing, activities such as planning and requirements anal-
ysis frequently remain manual tasks. Smart assistants can
be invaluable in these areas, particularly in translating test
strategies, cybersecurity requirements, and risk assessments
into detailed test plans. Additionally, smart assistants can
streamline tasks related to the preparation of testing processes,
such as the selection and configuration of tools for different
methodologies, which can be an arduous activity. Deciphering
the outcomes of cybersecurity testing requires extensive tech-
nical knowledge concerning the System Under Test (SUT),
its operating platform, the programming languages utilized,
and weaknesses to accurately evaluate the implications of
vulnerabilities. Moreover, techniques like static analysis and
dynamic testing, for instance, fuzzing, exhibit unique strengths
and limitations necessitating further analysis and additional
testing to refine and verify results. In this context, smart
assistants can play a pivotal role in verifying and refining
results by deploying advanced tools to convert intermediate
data into final outcomes, effectively distinguishing between
true and false positives, thereby improving the accuracy of
cybersecurity testing. Ultimately, smart assistants contribute
to the development of effective security patches for detected
vulnerabilities through automated program repair techniques,
e.g., using the application of Code Large Language Models
(LLMs).

1) Example: Security Test Generation Flow: Scenario: A
software development team is tasked with building a new web
application with stringent security requirements. They leverage
automated test generation and vulnerability localization tools
within the VeriDevOps framework to ensure the application’s
resilience against potential cyber threats.

Flow:
1) Security Requirements Analysis: The development team

is using smart assistants to identify comprehensive se-
curity test requirements for the web application based
on the common knowledge base populated by the smart
assistant.

2) Security Test Planning Control: Smart assistant will
support the planning of the security testing, in particular
propose complementary security testing tools and test
exit criteria based on the security test requirements,
existing licenses, used techology.

3) Security Test Generation Execution: The development
team selects from the security testing tools proposed by
the smart assistants in the planning phase those that
fit best to their experience. Based on the employed
technology, the smart assistants configure the selected
security testing tools, using knowledge from previous
projects and from the community. The development team
checks the configuration and makes modification where
necessary based on their own expertise. Smart assistants
learn from these modification for future processes. Using
security test generation tools configured by smart assis-

tants and the development in a collaboratavi manner, a
test suite is generated and executed, aimed at evaluating
the application’s security posture. The test suite en-
compass both positive and negative scenarios, covering
various attack vectors and potential vulnerabilities.

4) Security Test Evaluation The test cases produce a large
number of a variety of results. Smart assistants help the
development team to get an overview, through evaluation
of the test results, e.g., by analyzing them with respect
to uniques, relevance, and severity. Further tests can be
generated and executed by smart assistants to obtain
more information on findings. Finally, smart assistant
can automatically populate the bug tracking system
with consolidated information from the test evaluation,
prioritize them based on test results and threat analysis
results, and alert the development teams if urgent action
is required.

5) Reporting: Smart assistants generate based draft test
reports based on the performed activities based on the
requirements from authorities they have been fed with.
The development team completes, reviews and finalize
the test reports. Smart assistants can also summarize
these reports for the project management.

6) Remediation and Patching: The development team ad-
dresses the identified vulnerabilities. Smart assistants
propose potential securuty patches and assess their ap-
propriateness using patch validation techniques, e.g.,
generating further test cases. The development team se-
lects promising patch candidates, improves them. Smart
assistants perform again patch validation and regression
techniques to assess the patch until an effective patch
has been identified.

This flow demonstrates how the development team can benefit
from smart assistants in all the stages of security testing
to prepare, perform, evaluate and report security tests and
their results in a consolidated and efficient manner, where the
development teams and smart assistants are working together
hand in hand, to identify and fix vulnerabilities with increased
efficiency.

C. Smart Assistants for Resilience Monitoring

Specific assistants have to be developed to help monitor,
detect, and respond to security threats more efficiently. By
enhancing and automating many aspects of cybersecurity op-
erations, smart assistants are becoming an essential component
of modern security strategies, helping to mitigate the increas-
ing complexity and frequency of cyber threats. Smart assis-
tants will enable Automated Threat Detection by continuously
monitoring network traffic, system logs, and other data sources
for unusual or suspicious activity and detecting anomalies that
might indicate a breach or an attempted attack. Upon detecting
a potential threat, these AI-driven systems can generate real-
time alerts. This immediate notification allows security teams
to act swiftly, potentially stopping attackers before they can
cause significant damage. As such, smart assistants will pro-
vide automated response capabilities, deciding and executing



predefined actions when certain types of threats are detected.
This might include isolating affected systems, blocking IP
addresses, or initiating patches to vulnerable software. In addi-
tion, by analyzing historical data and identifying trends, smart
assistants can predict and identify potential future threats. This
predictive capability helps in proactive threat management,
allowing organizations to strengthen defenses before an attack
occurs.

1) Example: Automated Threat Detection and Response
Flow: Scenario: An organization is deploying a new software
application that handles sensitive user data. To ensure the secu-
rity of this application, the organization integrates automated
threat detection and response mechanisms by applying the
VeriDevOps pipeline with a help of specific assistants.

Flow:

1) Security Requirements Specification: The organization
generate structured security requirements based on nat-
ural language descriptions of potential threats and vul-
nerabilities associated with the application.

2) Continuous Monitoring Setup: Smart assistants configure
monitoring tools to continuously monitor network traffic,
system logs, and application behaviour for suspicious
activity.

3) Real-time Threat Detection: As the application is de-
ployed and operational, the monitoring tools detect
anomalous patterns in user access patterns and data
usage, signalling potential security threats.

4) Automated Alert Generation: Upon detecting suspicious
activity, the monitoring tools automatically generate
real-time alerts, notifying the security team of the po-
tential security breach.

5) Automated Response: Smart assistants trigger predefined
automated response actions, such as isolating affected
systems, blocking IP addresses associated with suspi-
cious activity, and initiating patches to mitigate vulner-
abilities.

6) Incident Analysis and Resolution: The security team
analyzes the alerts and response actions, investigating
the root cause of the security incident and implementing
further measures to prevent similar incidents in the
future.

This flow illustrates how automated threat detection and re-
sponse mechanisms, integrated within the VeriDevOps frame-
work, enable organizations to identify and mitigate security
threats in real-time proactively.

D. Smart Assistants Collaboration

Our proposed framework leverages a hierarchical structure
of smart assistant agents to address various aspects of the
DevSecOps lifecycle. High-level agents oversee the entire
process, strategically delegating tasks to lower-level agents
specializing in specific areas. These lower-level agents can
automate tasks such as identifying vulnerabilities based on
established security protocols, performing code reviews in
order to detect potential security concerns within the codebase,

generating test cases, and even proposing patches for vulner-
abilities. This collaborative approach fosters a more efficient
workflow, where specialized agents handle routine tasks, while
high-level agents maintain an overarching view and ensure
progress towards overall security objectives.

To further enhance the reliability of the framework, the
agents can employ self-assessment techniques. These tech-
niques involve cross-referencing findings with established
security protocols and identifying potential biases or errors
within the generated outputs, such as e.g. ”hallucinations”
in the context of LLMs. When necessary, the agents can
seek clarification from human experts, ensuring the accuracy
and effectiveness of their work. This self-assessment helps to
minimize errors and ensures that the agents operate within the
bounds of established security best practices.

In summary, the proposed framework utilizing a hierarchy
of smart assistants represents a significant advancement to-
wards a more automated, efficient, and secure software de-
velopment lifecycle. By automating and streamlining various
tasks, developers and operations teams can focus their efforts
on more complex and critical aspects of the development
lifecycle. Furthermore, we plan to have proper safeguards,
validation mechanisms, and human oversight within the frame-
work to ensure the reliability and security of the outputs
generated by these agents. Additionally, continuous training
and refinement of AI-based assistants would be necessary
to keep pace with the ever-evolving landscape of software
development practices and security threats.

IV. CONCLUSIONS

In this paper, we have presented a proposal for a holistic
approach to enhancing software security and resilience through
the integration of smart assistants within the software de-
velopment lifecycle. By combining innovative methodologies,
automated processes, and AI-driven assistance, our approach
offers a comprehensive framework for building secure and
resilient software systems.

We introduced the concept of smart assistants tailored to
various stages of the software development lifecycle, from
requirements specification to vulnerability analysis and re-
mediation. These assistants leverage AI technologies to em-
power development teams, streamline security-related tasks,
and make informed security decisions.

Through the integration of smart assistants, organizations
can proactively identify and mitigate security threats through-
out the development process. By automating tasks such as
security requirements analysis, code review, and vulnerability
testing, smart assistants enable development teams to focus
on building high-quality software while ensuring security best
practices are followed.

However, the adoption of smart assistants is not without
challenges. Integration complexities, ensuring clarity of secu-
rity requirements, and addressing limitations of automation
are among the hurdles that organizations may encounter.
Overcoming these challenges will require collaboration across



the organization and ongoing research and development efforts
in the field of software security.

Despite these challenges, the potential benefits of integrating
smart assistants into the software development lifecycle are
significant. By leveraging AI-driven assistance, organizations
can build more secure and resilient software products, ulti-
mately mitigating the impact of cyber threats and protecting
critical digital assets.

In conclusion, the integration of smart assistants represents a
promising approach to enhancing software security in today’s
digital landscape. By embracing innovation, addressing chal-
lenges, and fostering collaboration, organizations can leverage
smart assistants to build a more secure and resilient digital
future.

ACKNOWLEDGMENT

The proposed work is the fruit of the authors’ extensive
collaboration in many research projects and mainly AIDOaRt
[27], which has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 101007350. The
JU receives support from the European Union’s Horizon 2020
research and innovation programme and Sweden, Austria,
Czech Republic, Finland, France, Italy, and Spain.

REFERENCES

[1] M. Cankar, N. Petrovic, J. P. Costa, A. Cernivec, J. Antic, T. Martincic,
and D. Stepec, “Security in devsecops: Applying tools and machine
learning to verification and monitoring steps,” in Companion of the
2023 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE 2023, Coimbra, Portugal, April 15-19, 2023 (M. Vieira,
V. Cardellini, A. D. Marco, and P. Tuma, eds.), pp. 201–205, ACM,
2023.

[2] Y. He, G. Meng, K. Chen, X. Hu, and J. He, “Towards security threats of
deep learning systems: A survey,” IEEE Trans. Software Eng., vol. 48,
no. 5, pp. 1743–1770, 2022.

[3] D. Bassi and H. Singh, “A systematic literature review on software
vulnerability prediction models,” IEEE Access, vol. 11, pp. 110289–
110311, 2023.

[4] A. Freund, “backdoor in upstream xz/liblzma leading to ssh
server compromise. post on mailing list oss-security@openwall..”
https://openwall.com/lists/oss-security/2024/03/29/4, 2024. Accessed:
2024-04-25.

[5] A. Sadovykh, G. Widforss, D. Truscan, E. P. Enoiu, W. Mallouli, R. Igle-
sias, A. Bagnto, and O. Hendel, “VeriDevOps: Automated Protection and
Prevention to Meet Security Requirements in DevOps,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), Feb. 2021.

[6] J. Jia, Y. Liu, G. Zhang, Y. Gao, and D. Qian, “Software approaches for
resilience of high performance computing systems: a survey,” Frontiers
Comput. Sci., vol. 17, no. 4, p. 174105, 2023.

[7] S. M. Alhidaifi, M. R. Asghar, and I. S. Ansari, “A survey on cyber
resilience: Key strategies, research challenges, and future directions,”
ACM Comput. Surv., vol. 56, no. 8, pp. 196:1–196:48, 2024.

[8] E. P. Enoiu, D. Truscan, A. Sadovykh, and W. Mallouli, “VeriDevOps
Software Methodology: Security Verification and Validation for DevOps
Practices,” in Proceedings of the 18th International Conference on
Availability, Reliability and Security, ARES ’23, (New York, NY, USA),
pp. 1–9, Association for Computing Machinery, Aug. 2023.

[9] M. Savary-Leblanc, L. Burgueño, J. Cabot, X. Le Pallec, and S. Gérard,
“Software assistants in software engineering: A systematic mapping
study,” Software: Practice and Experience, vol. 53, no. 3, pp. 856–892,
2023.

[10] S. Santhanam, T. Hecking, A. Schreiber, and S. Wagner, “Bots in
software engineering: a systematic mapping study,” PeerJ Comput Sci,
vol. 8, p. e866, Feb. 2022.

[11] R. Moguel-Sánchez, C. S. Martı́nez-Palacios, J. O. Ocharán-Hernández,
X. Limón, and J. Sánchez-Garcı́a, “Bots and their uses in software
development: A systematic mapping study,” in 2022 10th International
Conference in Software Engineering Research and Innovation (CON-
ISOFT), pp. 140–149, 2022.

[12] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, (New York, NY, USA), p. 1433–1443, Association for Computing
Machinery, 2020.

[13] A. Fontes and G. Gay, “The integration of machine learning into auto-
mated test generation: A systematic mapping study,” Software Testing,
Verification and Reliability, vol. 33, no. 4, p. e1845, 2023.

[14] M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,
D. Poshyvanyk, M. Di Penta, and G. Bavota, “An empirical study on the
usage of transformer models for code completion,” IEEE Transactions
on Software Engineering, vol. 48, no. 12, pp. 4818–4837, 2022.

[15] D. Drain, C. Wu, A. Svyatkovskiy, and N. Sundaresan, “Generating
bug-fixes using pretrained transformers,” in Proceedings of the 5th
ACM SIGPLAN International Symposium on Machine Programming,
MAPS 2021, (New York, NY, USA), p. 1–8, Association for Computing
Machinery, 2021.

[16] B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning to fix
coding errors with a text-to-text transformer,” in Proceedings of the 38th
International Conference on Machine Learning (M. Meila and T. Zhang,
eds.), vol. 139 of Proceedings of Machine Learning Research, pp. 780–
791, PMLR, 18–24 Jul 2021.

[17] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu, and N. Sundaresan, “Automating code
review activities by large-scale pre-training,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, (New
York, NY, USA), p. 1035–1047, Association for Computing Machinery,
2022.

[18] P. Thongtanunam, C. Pornprasit, and C. Tantithamthavorn, “Autotrans-
form: Automated code transformation to support modern code review
process,” in 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE), pp. 237–248, 2022.

[19] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Using pre-trained models to boost code review au-
tomation,” in Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (New York, NY, USA), p. 2291–2302,
Association for Computing Machinery, 2022.

[20] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering: Sur-
vey and open problems,” in 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE),
(Los Alamitos, CA, USA), pp. 31–53, IEEE Computer Society, may
2023.

[21] X. Huang, W. Liu, X. Chen, X. Wang, H. Wang, D. Lian, Y. Wang,
R. Tang, and E. Chen, “Understanding the planning of llm agents: A
survey,” 2024.

[22] R. Kaur, D. Gabrijelčič, and T. Klobučar, “Artificial intelligence for
cybersecurity: Literature review and future research directions,” Infor-
mation Fusion, vol. 97, p. 101804, 2023.

[23] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “Resa: An ontology-
based requirement specification language tailored to automotive sys-
tems,” in 10th IEEE International Symposium on Industrial Embedded
Systems (SIES), pp. 1–10, 2015.

[24] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “Resa tool: Structured
requirements specification and sat-based consistency-checking,” in 2016
Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 1737–1746, 2016.

[25] N. Mahmud, C. Seceleanu, and O. Ljungkrantz, “Specification and
semantic analysis of embedded systems requirements: From description
logic to temporal logic,” in Software Engineering and Formal Methods
(SEFM), (Cham), pp. 332–348, Springer, 2017.

[26] M. E. Salari, E. P. Enoiu, W. Afzal, and C. Seceleanu, “An experiment
in requirements engineering and testing using EARS notation for PLC
systems,” in IEEE International Conference on Software Testing, Veri-
fication and Validation, ICST 2023 - Workshops, Dublin, Ireland, April
16-20, 2023, pp. 10–17, IEEE, 2023.



[27] H. Bruneliere, V. Muttillo, R. Eramo, L. Berardinelli, A. Gómez,
A. Bagnato, A. Sadovykh, and A. Cicchetti, “AIDOaRt: AI-augmented
Automation for DevOps, a model-based framework for continuous
development in Cyber–Physical Systems,” Microprocessors and Mi-
crosystems, vol. 94, p. 104672, Oct. 2022.


